20 research outputs found

    An expanded description, natural history, and genetic variation of the recently described cobra species Naja fuxi Shi et al., 2022

    Get PDF
    The morphological variation, extended distribution, and sequence divergence of a recently described of cobra Naja fuxi Shi et al., 2022 captured from mountainous areas in Thailand are evaluated by using molecular and morphological analyses. We investigated the genetic variation and affinities of 72 specimens in the genus Naja by using mitochondrial DNA (cytochrome b and control region) and the nuclear DNA gene, C-mos. Morphological examination was conducted for 33 cobra specimens obtained from the northern, western, and north-eastern regions, and data on their natural history were gathered during field surveys. A high degree of genetic differentiation was shown to exist between the cobras collected from lowlands and those from mountainous areas. N. fuxi occurs in uplands bordering Thailand’s Central Basin, whereas the similar looking N. kaouthia Lesson, 1831 is more or less restricted to the lowlands. All phylogenetic and network analyses supported a distinct clade of N. fuxi from north, west, and, north-east regions. In addition, N. fuxi seems to exhibit a split between the north-eastern population and those from the north and west. The range of N. fuxi probably extends far into the mountainous areas of the neighbouring countries Myanmar, Laos, and Vietnam. Morphologically, N. fuxi in Thailand can be distinguished from all other cobra species in the adjacent Oriental Region. The speciation of cobras in Thailand likely reflects key events in the region’s geographical, climate and environmental history

    Chromosome map of the Siamese cobra: did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?

    Get PDF
    Background Unlike the chromosome constitution of most snakes (2n=36), the cobra karyotype shows a diploid chromosome number of 38 with a highly heterochromatic W chromosome and a large morphologically different chromosome 2. To investigate the process of sex chromosome differentiation and evolution between cobras, most snakes, and other amniotes, we constructed a chromosome map of the Siamese cobra (Naja kaouthia) with 43 bacterial artificial chromosomes (BACs) derived from the chicken and zebra finch libraries using the fluorescence in situ hybridization (FISH) technique, and compared it with those of the chicken, the zebra finch, and other amniotes. Results We produced a detailed chromosome map of the Siamese cobra genome, focusing on chromosome 2 and sex chromosomes. Synteny of the Siamese cobra chromosome 2 (NKA2) and NKAZ were highly conserved among snakes and other squamate reptiles, except for intrachromosomal rearrangements occurring in NKA2. Interestingly, twelve BACs that had partial homology with sex chromosomes of several amniotes were mapped on the heterochromatic NKAW as hybridization signals such as repeat sequences. Sequence analysis showed that most of these BACs contained high proportions of transposable elements. In addition, hybridization signals of telomeric repeat (TTAGGG)n and six microsatellite repeat motifs ((AAGG)8, (AGAT)8, (AAAC)8, (ACAG)8, (AATC)8, and (AAAAT)6) were observed on NKAW, and most of these were also found on other amniote sex chromosomes. Conclusions The frequent amplification of repeats might involve heterochromatinization and promote sex chromosome differentiation in the Siamese cobra W sex chromosome. Repeat sequences are also shared among amniote sex chromosomes, which supports the hypothesis of an ancestral super-sex chromosome with overlaps of partial syntenies. Alternatively, amplification of microsatellite repeat motifs could have occurred independently in each lineage, representing convergent sex chromosomal differentiation among amniote sex chromosomes

    cDNA cloning, sequencing, and expression of <img src='/image/spc_char/alpha.gif' border=0>- and <img src='/image/spc_char/beta.gif' border=0>-neurotoxins from Thai-Malayan krait

    No full text
    31-37 Amplification products of - and -neurotoxin from Thai-Malayan krait (Bungarus candidus) were cloned and expressed in TA expression vector. The expressed protein could not be distinguished by SDS-PAGE. Hence, immunoblotting was performed using AntiHis (C-term)-HRP antibody. The antibody could identify the histidine tags at 24 h incubation with 0.02% L-arabinose. To increase the expression level, PCR products were cloned into PCR2.1 cloning vector and pGEX2T expression vector. The optimal condition for protein expression was IPTG induction at 1 mM for 24 h. Neurotoxin fusion proteins were used as antigen to generate antibodies in mice. In vitro neutralization indicated that antibody against neurotoxin fusion proteins raised in mice was able to neutralize 2 LD50 of crude venom. This result provides basic data for the use of the neurotoxin fusion proteins as immunogens in the development of specific antivenoms against the B. candidus venom. </smarttagtype

    Anticancer properties of phospholipase A2 fromDaboia siamensis venom on human skin melanoma cells

    No full text
    Abstract Background Phospholipase A2 (PLA2) is a major component of theDaboia siamensis venom, which is able to hydrolyse the membrane of various cells. For this reason, the activity of PLA2was investigated regarding its pharmaceutical properties. This study was conducted to explore the pharmacological properties of a PLA2from Daboia siamensis (dssPLA2) venom on human skin melanoma cell line (SK-MEL-28). Methods dssPLA2 was isolated by ion exchange and gel filtration columns. Various concentrations of dssPLA2were investigated for cytotoxic activity and inhibition of migration on SK-MEL-28 cells. Cell death analysis, mRNA expression levels of Notch I-III and BRAF V600E genes were also determined. Results dssPLA2 exhibited cytotoxicity on SK-MEL-28 for 24 and 72 h as compared with untreated cells. However, it had no toxic effects on CCD-1064sk cells under the same conditions. dssPLA2 (0.25 and 0.5 ÎĽg/mL) induced 17.16 and 30.60 % of apoptosis, while activated 6.53 and 7.05 % of necrotic cells. dssPLA2 at 0.25, 0.5, 1 and 2 ÎĽg/mL could inhibit migration on SK-MEL-28 cells for 24 h by 31.06, 41.66, 50 and 68.75 %, respectively. The action of dssPLA2 significantly reduced the levels of Notch I and BRAF V600E genes expression on SK-MEL-28 cells compared with untreated cells at 72 h. Conclusions This study indicates that dssPLA2 had potential effects of apoptosis, necrosis, cytotoxicity and inhibition of migration on SK-MEL-28 cells. dssPLA2 could possibly be a selective agent that targets cancer cells without affecting normal cells

    Table_S6

    No full text
    Nucleotide sequence divergence (Kz) in intron10 and intron 11 of male-derived CTNNB1Z sequences among eight snake species (below diagonal), and female-derived CTNNB1Z sequences (above diagonal). Standard errors are indicated for all values. Table is also available in PDF format in the "Supplementary file" PD

    Table_S3

    No full text
    Frequencies of synonymous and nonsynonymous substitutions in the exon11 of male-derived CTNNB1Z sequences among eight snake species. Ks values are shown above the diagonal, and Ka values are shown below the diagonal. Standard errors are indicated in all values. Table is also available in PDF format in the "Supplementary file" PD

    Data from: Evolutionary dynamics of the gametologous CTNNB1 gene on the Z and W chromosomes of snakes

    No full text
    Snakes exhibit genotypic sex determination with female heterogamety (ZZ males and ZW females), and the state of sex chromosome differentiation also varies among lineages. To investigate the evolutionary history of homologous genes located in the non-recombining region of differentiated sex chromosomes in snakes, partial sequences of the gametologous CTNNB1 gene were analyzed for 12 species belonging to henophid (Cylindrophiidae, Xenopeltidae, and Pythonidae) and caenophid snakes (Viperidae, Elapidae, and Colubridae). Nonsynonymous/synonymous substitution ratios (Ka/Ks) in coding sequences were low (Ka/Ks < 1) between CTNNB1Z and CTNNB1W, suggesting that these two genes may have similar functional properties. However, frequencies of intron sequence substitutions and insertion-deletions were higher in CTNNB1Z than CTNNB1W, suggesting that Z-linked sequences evolved faster than W-linked sequences. Molecular phylogeny based on both intron and exon sequences showed the presence of two major clades: (1) Z-linked sequences of Caenophidia, and (2) W-linked sequences of Caenophidia clustered with Z-linked sequences of Henophidia, which suggests that the sequence divergence between CTNNB1Z and CTNNB1W in Caenophidia may have occurred by the cessation of recombination after the split from Henophidia

    Data from: Evolutionary dynamics of the gametologous CTNNB1 gene on the Z and W chromosomes of snakes

    No full text
    Snakes exhibit genotypic sex determination with female heterogamety (ZZ males and ZW females), and the state of sex chromosome differentiation also varies among lineages. To investigate the evolutionary history of homologous genes located in the non-recombining region of differentiated sex chromosomes in snakes, partial sequences of the gametologous CTNNB1 gene were analyzed for 12 species belonging to henophid (Cylindrophiidae, Xenopeltidae, and Pythonidae) and caenophid snakes (Viperidae, Elapidae, and Colubridae). Nonsynonymous/synonymous substitution ratios (Ka/Ks) in coding sequences were low (Ka/Ks < 1) between CTNNB1Z and CTNNB1W, suggesting that these two genes may have similar functional properties. However, frequencies of intron sequence substitutions and insertion-deletions were higher in CTNNB1Z than CTNNB1W, suggesting that Z-linked sequences evolved faster than W-linked sequences. Molecular phylogeny based on both intron and exon sequences showed the presence of two major clades: (1) Z-linked sequences of Caenophidia, and (2) W-linked sequences of Caenophidia clustered with Z-linked sequences of Henophidia, which suggests that the sequence divergence between CTNNB1Z and CTNNB1W in Caenophidia may have occurred by the cessation of recombination after the split from Henophidia
    corecore